[Sharing]
HỌC DATA SCIENCE NHƯ THẾ NÀO?
#datascience
Helu mấy em, dạo này có rất nhiều bạn sinh viên hỏi chị về định hướng theo 1 ngành siêu hot là Data Science đấy! Vậy ngồi xuống đây đọc một bài viết hay về nghề Data Science nhé. Đây là ngành nghề được dự đoán sẽ có nhu cầu cao nhất trong tương lai đó. Bài viết này sẽ đưa ra các bước và nguồn cho các bạn muốn học Data Science đó, đọc xem và share cho các bạn còn loay hoay nha!
___________________________________
I. Học lập trình:
Một Data Scientist (DStist) không thể không biết lập trình, dù không cần thiết phải giỏi như một lập trình viên nhưng phải đủ khả năng viết được những chương trình cơ bản. Từ khi nhập học tới giờ, từ một đứa mà kiến thức lập trình là con số 0 tròn trình, mình đã học qua R, Java, Python, SQL (kì tới sẽ có cả NoSQL nữa). Học tới đâu là sử dụng luôn tới đấy nên thường mình phải tự học thêm rất nhiều để có thể hiểu được logic và cú pháp của ngôn ngữ lập trình đó. Ngôn ngữ quan trọng nhất, phổ biến nhất dành cho DStist là Python với thư viện khổng lồ. Xếp sau Python là R, rất mạnh về phân tích thống kê. Năm ngoái mình được Khoa Toán thuê viết một App (ShinyApp) tương tác dành cho một dự án nghiên cứu của Bang sử dụng ngôn ngữ này.
Vậy học lập trình ở đâu?
https://www.tutorialspoint.com/
Trang này thì gi gỉ gì gi cái gì cũng có, thích học gì có ngay cái đó. Còn nhớ năm ngoái mình cực kỳ đuối khi các thầy bắt học thêm Java, với lý do rằng DStist thường hay phải làm việc trực tiếp với lập trình viên, vậy thì phải học để có thể trò chuyện với nhau được. Mình đã phải đọc thêm sách, đi học thêm phụ đạo, rồi lại đọc mòn mỏi trên trang này để theo kịp các bạn trên lớp. Kết quả là cuối kì, mình tự viết được cả trò chơi và thậm chí còn lập trình được công thức toán thống kê cho thư viện Java đấy.
2. https://codingbat.com/
Đây là nơi mình luyện viết code, từ những ứng dụng đơn giản nhất chỉ vài ba dòng. Trình độ của mình đã lên rất nhanh sau khi hoàn thành phân nửa số bài tập trên này.
3. https://www.datacamp.com/
Mình chưa sử dụng trang này bao giờ, nhưng được quảng cáo khá nhiều. Trên này có các khóa học miễn phí R và Python thiết kế riêng cho DS. Thích hợp cho những ai mới bắt đầu.
4. https://www.udemy.com/.../development/programming-languages/
5. https://www.codecademy.com/catalog/subject/all
Đây là hai trang do bạn bè mình giới thiệu. Có mấy bạn không đi học phụ đạo Java được đã trả tiền theo học trên này. Vì thường xuyên có giảm giá sâu nên khóa học không quá đắt đỏ. Và điểm lợi thế là sẽ có chứng nhận cuối khóa, có thể củng cố thêm cho hồ sơ xin học hoặc xin việc của bạn.
II. Học thống kê:
Đã làm việc với dữ liệu là phải hiểu lý thuyết thống kê, chí ít cũng phải biết tới những khái niệm cơ bản như lấy mẫu (sampling), trung bình (mean), trung vị (median), độ lệch chuẩn (standard deviation), hồi quy tuyến tính (linear regression),... Nếu muốn trở thành DStist thì còn phải biết tới kiến thức thống kê nâng cao, liên quan tới machine learning. Một điều tuyệt vời là những cuốn sách thống kê hay ho nhất, tổng hợp nhất lại miễn phí, nhằm đáp ứng nhu cầu học tập về dữ liệu ngày càng cao. Hai cuốn sách mà tất cả các giáo sư Khoa Toán của mình đều sử dụng là:
The Elements of Statistical Learning (Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, 2001)
Cuốn này hơn 700 trang, chia làm 18 chương, sử dụng R trong phân tích thống kê. Bản thân mình thấy sách quá hay, minh họa đầy đủ, giải thích kĩ càng, đọc tới đâu có thể copy code đến đấy để tự thử nghiệm. Dĩ nhiên bạn không cần phải đọc hết sách. Đụng tới khái niệm thống kê nào thì tra cứu tương ứng trong sách cũng được.
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
2. An Introduction to Statistical Learning: With Applications in R ( Trevor Hastie, Robert Tibshirani, Daniela Witten, Gareth James, 2013)
Cuốn này cũng hay, hơn 400 trang, chia làm 10 chương, cũng dùng R. Ai ngại đọc cuốn trên thì có thể bắt đầu với cuốn này.
https://www-bcf.usc.edu/.../ISL/ISLR%20First%20Printing.pdf
III. Học Data Science - Nâng cao:
Sau khi có chút kiến thức cơ bản về lập trình và thống kê rồi thì bạn có thể sử dụng các trang sau để tìm hiểu thêm về các mảng chính của DS như artificial intelligence, computer vision, machine learning, Big Data Analytics, Business Intelligence...
https://towardsdatascience.com/
Đây là trang tổng hợp cực kì nhiều bài viết chất lượng từ các giáo sư và chuyên gia trong ngành. Có rất nhiều bài hướng dẫn chi tiết từng bước cho trình độ beginner. Mình thường đọc trên trang này về machine learning và artificial intelligence (AI). Không chỉ có những phân tích rất cặn kẽ về mặt lý thuyết, nhiều bài viết còn cung cấp ví dụ minh họa và đính kèm cả code để bạn đọc tự thử nghiệm. Ví dụ bài viết sau về Deep Learning là của một giáo sư ở Barcelona, toàn bộ Code có trong Notebook trên Google Colab. Vì chạy trên Cloud nên bạn không cần cài đặt gì mà có thể lập tức chạy chương trình ngay được, cực kì phù hợp cho những ai muốn xem qua trước và không muốn mất công cài đặt này nọ.
https://towardsdatascience.com/deep-learning-for...
2. https://www.datascienceweekly.org/
Một bạn người Na Uy trên Tandem giới thiệu cho mình về trang này, bảo rằng đang tự học machine learning ở đây. Thế là mình cũng đăng ký nhận Newsletter từ mấy hôm trước. Mỗi tuần, mình nhận được một email tổng hợp các bài viết nổi bật trong ngành. Như vậy để mình luôn nắm bắt được những xu hướng mới nhất và cập nhật những tiến bộ công nghệ mới.
3. https://www.kaggle.com/
Một đồng nghiệp người Ấn Độ chỉ cho mình trang này quá hay luôn. Đây là nơi bạn học hỏi bằng cách thực hành qua các dự án, các cuộc thi và thử thách quốc tế. Các công ty, tổ chức treo giải thưởng có khi lên tới cả 100,000$ cho đội nào chiến thắng. Chẳng hạn hiện giờ có 20 cuộc thi đấu song song, và đã có hàng ngàn đội đăng kí tham gia. Trên này cũng có các micro-courses hoàn toàn miễn phí từ Python cho tới Deep Learning dành cho beginner.
https://www.kaggle.com/learn/overview
4. https://www.coursera.org/browse/data-science
Và cuối cùng, dĩ nhiên là trên coursera cũng có khóa học miễn phí dành cho DS. Khi nào có thời gian, bạn thử đăng ký xem sao.
Trên đây là những hướng dẫn chung dành cho những ai muốn tìm hiểu về Data Science và học những kĩ năng cơ bản trước. Hi vọng giúp được các bạn đang quan tâm. Mình sẽ tiếp tục cập nhật thêm nhé.
Blog Mai Knows người chị thân thiết của Founder Hoa Dinh ở Đức
https://www.facebook.com/maiknowsnow/
Link tham khảo về lương của DStist:
https://www.burtchworks.com/.../2018-data-scientist.../
----
Join các kênh khác của HannahEd:
- Job Hunters & Career Builders - HannahEd
- Học bổng ngắn hạn, trao đổi, tình nguyện - HannahEd
- English Club HEC
- Scholarship Hunters
- Web/tiktok/insta: hannahed.co
- Youtube: HannahEd
🌍📚Những #Schofan quyết tâm và muốn chuẩn bị kĩ cho nhiều học bổng từ giờ thì mau mau đăng kí lớp tìm và apply học bổng #HannahEd đã có lịch các lớp tháng 11, 12 và chương trình Mentor, Review hồ sơ, Tập phỏng vấn.
Link này để nhận thêm thông tin hoặc email [email protected] nhé:
http://tiny.cc/HannahEdClassInfo
https://hannahed.co/lop-tim-va-nop-hoc-bong/
❤ Like và share nếu các em thấy thông tin có ích nhé ❤
#HannahEd #duhoc #hocbong #sanhocbong #scholarshipforVietnamesestudents
同時也有1部Youtube影片,追蹤數超過2萬的網紅Untyped 對啊我是工程師,也在其Youtube影片中提到,因為疫情關在家工作,效率容易變差,悶到快爆炸了。You are not alone! 分享我當軟體工程師的一天,影片中也分享我如何幫助自己維持效率的方法跟在家工作的建議,希望有幫助! 第一次做Vlog形式的影片,希望你們還喜歡! 這集會聊到... 💬 Overview 💬 💙 早上 - 充實的早...
「computer science an overview」的推薦目錄:
- 關於computer science an overview 在 Scholarship for Vietnamese students Facebook 的精選貼文
- 關於computer science an overview 在 交通大學校友會 NCTU Alumni Association Facebook 的最佳貼文
- 關於computer science an overview 在 交通大學校友會 NCTU Alumni Association Facebook 的最讚貼文
- 關於computer science an overview 在 Untyped 對啊我是工程師 Youtube 的最佳解答
- 關於computer science an overview 在 Computer-Science-an-Overview (12th edition) 共筆協作 - GitHub 的評價
- 關於computer science an overview 在 computer science an overview tenth edition by j glenn ... 的評價
computer science an overview 在 交通大學校友會 NCTU Alumni Association Facebook 的最佳貼文
電工57級王申培學長返校演講,敬請踴躍參加!
(2019.12.11 Talk) Intelligent Pattern Recognition and Applications to e-Forensics and Smart Cities
線上報名表:https://docs.google.com/…/1FAIpQLSe7nuwsaS27Y7j8sJ…/viewform
Time:Dec. 11, 2019 Wednesday 9:00AM - 12:00PM
Venue:R108, 1F Engineering Building 4, NCTU
交通大學工程四館一樓108室(知新廳)
Please register before Dec. 10, 2019.
Contact:Patty Chen 03-5712121#54107 patty@mail.nctu.edu.tw
Speaker:Prof. Patrick S.P. Wang 王申培
Fellow, IAPR, ISIBM & IETI and IEEE ISIBM Outstanding Achievement Awardee
Professor of Computer and Information Science, Northeastern University, Boston, USA
Host:Prof. Horng, Ray-Hua 洪瑞華
Chairman, Dept. of Electronics Engineering, NCTU
Language: Chinese, or English if non-Chinese speaking in the audience.
Abstract
This talk is concerned with fundamental aspects of Intelligent Pattern Recognition (IPR) and applications. It basically includes the following: Basic Concept of Automata, Grammars, Trees, Graphs and Languages. Ambiguity and its Importance, Brief Overview of Artificial Intelligence (AI), Brief Overview of Pattern Recognition(PR), What is Intelligent Pattern Recognition (IPR)?
Interactive Pattern Recognition Concept, Importance of Measurement and Ambiguity, How it works, Modeling and Simulation, Basic Principles and Applications to Computer Vision, Security, e-Forensics, Road Sign Design, biomedical diagnosis, Safer biomedical diagnosis, Traffic and Robot Driving with Vision, Ambiguous (design of Road Signs vs Unambiguous (Good) Road Signs, How to Disambiguate an Ambiguous Road Sign? What is Big Data? and more Examples and Applications of Learning and Greener World using Computer Vision. Finally, some future research directions are discussed.
computer science an overview 在 交通大學校友會 NCTU Alumni Association Facebook 的最讚貼文
電工57級王申培學長返校演講,敬請踴躍參加!
(2019.12.11 Talk) Intelligent Pattern Recognition and Applications to e-Forensics and Smart Cities
線上報名表:https://docs.google.com/forms/d/e/1FAIpQLSe7nuwsaS27Y7j8sJ9LIdVuR7yR5aLVlKE9cxfll7efP153rw/viewform
Time:Dec. 11, 2019 Wednesday 9:00AM - 12:00PM
Venue:R108, 1F Engineering Building 4, NCTU
交通大學工程四館一樓108室(知新廳)
Please register before Dec. 10, 2019.
Contact:Patty Chen 03-5712121#54107 patty@mail.nctu.edu.tw
Speaker:Prof. Patrick S.P. Wang 王申培
Fellow, IAPR, ISIBM & IETI and IEEE ISIBM Outstanding Achievement Awardee
Professor of Computer and Information Science, Northeastern University, Boston, USA
Host:Prof. Horng, Ray-Hua 洪瑞華
Chairman, Dept. of Electronics Engineering, NCTU
Language: Chinese, or English if non-Chinese speaking in the audience.
Abstract
This talk is concerned with fundamental aspects of Intelligent Pattern Recognition (IPR) and applications. It basically includes the following: Basic Concept of Automata, Grammars, Trees, Graphs and Languages. Ambiguity and its Importance, Brief Overview of Artificial Intelligence (AI), Brief Overview of Pattern Recognition(PR), What is Intelligent Pattern Recognition (IPR)?
Interactive Pattern Recognition Concept, Importance of Measurement and Ambiguity, How it works, Modeling and Simulation, Basic Principles and Applications to Computer Vision, Security, e-Forensics, Road Sign Design, biomedical diagnosis, Safer biomedical diagnosis, Traffic and Robot Driving with Vision, Ambiguous (design of Road Signs vs Unambiguous (Good) Road Signs, How to Disambiguate an Ambiguous Road Sign? What is Big Data? and more Examples and Applications of Learning and Greener World using Computer Vision. Finally, some future research directions are discussed.
computer science an overview 在 Untyped 對啊我是工程師 Youtube 的最佳解答
因為疫情關在家工作,效率容易變差,悶到快爆炸了。You are not alone!
分享我當軟體工程師的一天,影片中也分享我如何幫助自己維持效率的方法跟在家工作的建議,希望有幫助!
第一次做Vlog形式的影片,希望你們還喜歡!
這集會聊到...
💬 Overview 💬
💙 早上 - 充實的早上 0:00
💙 早上 - 開始上班啦 3:45
💙 中午 - 失敗的蛋餅 7:13
💙 下午 - 轉圈圈工作 8:50
💙 傍晚 - 丟花的女孩 10:50
💙 晚上 - 一天的最愛 12:15
🙌🏻 好物推薦 🙌🏻
👍🏻 TKLAB 氨基酸溫和潔顏霜 https://shp.ee/ctuy7yj
👍🏻 Majextand 頸大師筆電架 https://shp.ee/s8kz29s
👍🏻 Logitech 羅技 MX Keys 無線鍵盤 https://shp.ee/ptt9wtm
👍🏻 Logitech 羅技 MX Master 3 無線藍牙滑鼠 https://shp.ee/pu9qtcc
👍🏻 Backbone 人體工學椅 https://shp.ee/fgi35c9
👍🏻 Tresanti 電動升降桌 https://shp.ee/9wmht7r
👍🏻 Blender Bottle 搖搖杯 https://shp.ee/ythgkxh
👍🏻 ESTEE LAUDER 特潤超導全方位修護露 https://shp.ee/cqjhqth
👍🏻 logitech 羅技 StreamCam https://shp.ee/fbvgbvc
👍🏻 RODE Lavalier GO 領夾式 小型麥克風 https://shp.ee/nx6w9vc
📢 📣 📢 本頻道影片內容有輸出成 podcast 📢 📣 📢
可以在各大podcast平台搜尋「Untyped 對啊我是工程師」
請大家多多支持呀!!🙏🏻💁🏻♀️
#dayinthelife #在家工作 #wfh
一定要看到影片最後面並且在「YouTube影片下方」按讚留言訂閱分享唷!
【愛屋及烏】
YouTube 👉 https://www.youtube.com/c/Untyped對啊我是工程師
Podcast 👉 https://open.spotify.com/show/3L5GRMXmq1MRsliQt43oi2?si=3zgvfHlETeuGfp9rIvwTdw
Facebook 臉書粉專 👉 https://www.facebook.com/untyped/
Instagram 👉 https://www.instagram.com/untypedcoding/
合作邀約 👉 untypedcoding@gmail.com
-
Untyped 對啊我是工程師 - There are so many data types in the world of computer science, so are the people who write the code. We aim to UNTYPE the stereotype of engineers and of how coding is only for a certain type of people.
凱心琳: 一個喜歡電腦科學邏輯推理,在科技圈努力為性別平等奮鬥的工程師。
【Disclaimer 聲明】
Some links are affiliated.
上面有些連結是回饋連結,如果你透過這些連結購買商品,我可以得到一些小獎勵,但不會影響到你購買的價格,甚至會是更低的價格!謝謝你的支持💕
computer science an overview 在 computer science an overview tenth edition by j glenn ... 的推薦與評價
... <看更多>
computer science an overview 在 Computer-Science-an-Overview (12th edition) 共筆協作 - GitHub 的推薦與評價
Computer -Science-an-Overview (12th edition) 共筆協作. Contribute to mini-island/Computer-Science-an-Overview development by creating an account on GitHub. ... <看更多>